
 

 30

  
Abstract— Development of enterprise systems 

has following characteristics: deadlines are always 
too short, there is no final specification, 
requirements change in the development phase and 
nobody knows the whole business process exactly 
(at least those who know the business process 
don’t know how to specify software which would 
support that process). On the other side, developers 
in big international corporations come from 
different countries; have different education and 
culture background, as well as their way of software 
development. In such environment it is extremely 
important that each part of the system is very 
flexible, generic and parameterized so runtime 
changes can be handled instantly. This paper gives 
a view on serious problems in the development 
process and the methodology for effective problem 
solving. There are several frameworks that help 
developers in building the enterprise systems, but if 
a developer is not aware of these problems, 
framework cannot prevent him or her from making 
the similar mistakes. Methodology presented in this 
paper is completely independent from the 
technology. 
 

Index Terms—Information systems, development 
process, MDD, OOP, OOD, generic applications  

1. INTRODUCTION 
EVELOPMENT of enterprise information 
systems is a challenging job with variety of 

problems which can appear anytime. For example, 
web portals, which are very popular nowadays, 
can be extremely difficult to  develop because they 
should be often integrated with some old legacy 
software system. Usually nobody knows how that 
legacy software works exactly, which makes a lot 
of trouble to developers. 

The biggest problem in the development of web 
portals is that they are, by default, huge; so, at the 
first sight, they can be developed very fast and a 
lot of parts can be developed in parallel and later 
on easily integrated. The following sentence is 
very popular in the management population, but 
each developer should be alarmed when he or 
she hears something like it. . 

 
 

“Development of that software is EASY; it is very 
SIMILAR to something we did before; we should 
ONLY add some SMALL changes.”   
Magic four words and its usage. The sentence given above 
and its variations are frequently used by the managers, but 
developers should be suspicious when they hear them. 
Whenever you hear a word EASY, SIMILAR, ONLY or SMALL, 
it is better you look closer into your software specification (if it 
exists).  

The second biggest problem is that nobody knows 
all details about the business which should be 
supported with the web portal. This can cause 
many changes in the system requirements in the 
development phase. This usually happens in the 
presentation layer, when some manager or tester 
sees that something is displayed in the wrong 
place, or some functionality should be disabled in 
some cases Bearing this in mind, we can conclude 
the following:  

“Everything that is displayed on the screen 
should be parameterized because there is a 
high probability that it can be changed.” 

A simple example is when application is 
developed in English language and later it is 
required that application has Multilanguage 
support. 

The third very important problem is a 
communication problem between users – 
managers – developers. This problem appears 
because in big multinational companies there are 
people from different countries, with different 
education and culture. This can cause significant 
problems in communication. Unified modeling 
language (UML) tries to resolve these problems 
but still it does not solve all of them. 

In the environment like this, a developer is forced 
to write highly parameterized code, which can be 
easily customized during the whole software 
lifecycle. This paper presents the methodology for 
effective software development,, which is highly 
flexible, generic, reusable and above all, it is 
extremely easy to build the new software parts on 
top of the old legacy software systems. This 
methodology makes it easy to build high quality 
software on top of software and databases with 
significant design problems. 

Efficient Development and Maintenance of 
Enterprise Information Systems in 

Multicultural Developer Environment   
Milovanović, M., Miloš; Milutinović, M., Veljko 

D 



 

 31

2. SIGNIFICANT PROBLEMS IN  
DEVELOPMENT OF ENTERPRISE SYSTEMS 

This chapter presents characteristics of the 
development process, which can cause a lot of 
difficulties to the developers. Each developer 
should be aware of these problems and be 
prepared to solve them if they appear. 

2.1 Rapid application development 
As it was mentioned before, managers often say 

that something is easy, that it can be done fast 
and if possible, finished within an unreasonable 
timeframe (very often, when asked for a deadline, 
managers reply: “The deadline is yesterday!”)... 
This is very common requirement and can cause 
many problems. Even if something can be done 
“quick and dirty” developers should avoid this 
development style because they can regret it in 
later phases. Figure 2 shows the progress of the 
software project in the typical scenario and in the 
scenario using our methodology. 

 
Fig. 2a. Progress of the software project in case of “Quick 
and Dirty” development style. Each software process, 
roughly speaking, has tree phases: setup phase, central 
development phase and final tuning phase. In case of a “quick 
and dirty” development style we can notice that in the first 
phase everything looks excellent because lot of functionality is 
developed fast. But in later phases, it becomes very difficult 
and time consuming to make even a small 

change.  
Fig. 2b. Progress of the software project using our 
methodology. In our methodology, a development phase can 
be much shorter. The only problem is that in the early phases 
of development there is no significant progress from the 
manager’s point of view so they become suspicious and 
require quick and dirty development style. Phase 1 (before t1) is 
used for the development of the framework and modeling of the 
software. Phase 2 (between t1 and t2) is a phase of the 
exploitation of framework potentials and most of the 
functionalities are implemented in that phase. Phase 3 (after t3) 
is used for the final tuning and needs to be done manually. 

As it is shown in the figure 2.a., it seems that quick 
and dirty approach is better, because it is faster in 
the first phase, but later our methodology proves 
to be much better because everything is 
implemented clean, and modeled properly so later 
variety of functionalities can be implemented 

extremely fast. In case of a “quick and dirty” style, 
in the later phases not only development cannot 
progress, also in many cases some code parts 
need to be rewritten from the scratch, which is 
very inefficient and time consuming.  

2.2 Requirements are changed during 
development phase 

Very frequent scenario is that manager notices 
that some “small” requirement should be added in 
the development phase, and even in the test 
phase. This can happen because managers don’t 
know the business process in detail or don’t know 
much about the capabilities of their developers so 
they give just rough specification in the beginning 
and later add more details. Typical example is that 
if some table is displayed, then some new column 
should be added or removed, or a number of 
displayed rows should be changed or some simple 
functionality should be added.  

2.3 Extension of the existing system 
Typical requirement is that the existing system 

should be extended with new functionality. 
Nowadays all companies want to have web portals 
for doing eBusiness. This is very tough 
requirement because existing systems can be 
very old and their design can be obsolete for a 
long time, even technology which was used for 
that old system can be abandoned. So, a 
developer needs to be extremely careful, needs to 
make strict interface to the old system and to 
make communication protocol with the old system 
highly parameterized, as will be described later     

2.4 Fancy and user friendly front end 
The last, but the most important thing is that a 

user interface needs to have a fancy design and to 
be user friendly. An example of the typical 
enterprise web portal is presented in the figure 3. 

 
Fig. 3. An example of the user interface of the modern 
enterprise web portals. Variety of data is displayed and a lot 
of functionalities are offered to the end user. 

Modern enterprise systems have plenty of 
functionalities and a nice design. It is very difficult 
to develop and maintain both of these 
characteristics, due to the problems mentioned 
above. An old legacy software system can hide 
behind the nice fancy user interface and many 
changes should be performed in the new 



 

 32

application in order to make the whole system 
working properly. That’s why a new application 
needs to be extremely flexible. 

3. PROPOSED SOLUTION 
We propose software architecture presented in the 
figure 4. Proposed architecture has four major layers: 
Presentation Layer, Business Logic, Framework, View 
Layer and Database. Purpose and responsibility of each 
layer will be presented in this chapter.  

 
Fig. 4. Software architecture. This software architecture is 
suitable to meet all requirements for building the enterprise 
information system and to successfully handle all mentioned 
problems. 

 
1) View layer 
View layer is the first layer on top of the Database. 
This layer is extremely important because it 
separates the code from the database. This is 
useful because database is shared and its 
structure can be changed anytime, so it is very 
good development style if we make those changes 
transparent for the code. Also, database can have 
significant problems in the design and it is much 
better to fix some problems first and then build the 
application on top of the clean database. 
Following transformations of the database 
structure can be very useful and make the rest of 
the code much better.  

a) Merging structures in the database 
It often happens that attributes of one entity are 
spread over several tables. In that case it is much 
better to join those tables first, using view, and 
then build application which sees one entity in one 
view/table. 

 
Fig. 5. Joining tables in the database.  If one entity is spread 
over several tables, it is much better to join those tables using 
view first and then build the application which sees one entity in 
one view/table. 

b) Extraction of key entities 
Very common problem is that the database design 
is not normalized. It means that several entities 
are joined and stored in one single table. In that 
case it is much better to use views to extract these 
entities first, to have clean model and then build 
application on top of it. Figure 6 presents this 
situation. 

 
Fig. 6a. Extraction of entities from a single table. In case 
that database has a design problem in which several entities 
are joined and stored in the single table, using views can 
extract those entities. 

 
Fig. 6b. UML model achieved using views. After we perform 
the extraction of entities using views we will have clean model 
of software, and each entity will be stored in the single table. 
Code which should be built on top of that database will be 
much cleaner. 

c)  Recycling the data 
Common case is that in the database we have 
tables with huge number of columns (we once saw 
a table with 78 columns!) and we don’t need most 
of them. Also, some column values can be packed 
or some abbreviations can be stored (legacy 
data). In those cases it is much better if data are 
refined first before they go to the application. 
Views can help us for that. Figure 7. presents view 
layer on top of table layer in the database.  

 
Fig. 7. View layer. Even we have just a few tables in the 
database, view layer can be big and also contains a sub layers. 
Each layer will perform one of the transformations mentioned in 
this section. 
 
2)  Framework 
Our ultimate goal is to develop the application 
which looks like presented in the figure 8. We can 
notice there are a lot of elements of the 
presentation layer and a lot of functionalities. To 
put them all together we will add one more 
abstract layer which will speed up the later 
development. 

 
Fig. 8. Ultimate application. Our final goal is to design the 
application which looks like one presented on the picture. 
Obviously we have in here elements of the presentational layer 
(data and images) and the business logic (buttons). 

Responsibility of this layer is to be a one more 
abstract layer which will help in the rapid 
development of business logic and presentation 



 

 33

layer. Upper layers will be developed by 
customizing required look and feel and required 
functionalities in this framework. 

Two major classes in the framework are 
TableView and Command. The idea is that class 
TableView should be responsible for drawing of 
its items and class Command should be responsible 
for the proper behavior. Common case is that for 
each row presented in the table several functions 
can be executed. That’s why we developed class 
TableView as the container for objects of the 
class Command. In that way a class TableView will 
receive several object of the class Command and 
for each of them will draw a button next to each 
row. When the button is pressed, a TableView 
object will detect which button is pressed and a 
proper command will be executed. UML diagram 
is presented in the figure 9.  

 
Fig. 10. UML modes of the base classes in framework. 
Classes TableView and Command are abstract classes. All 
classes responsible for the presentation will be derived from 
the class TableView and all classes responsible for the 
behavior (business logic) will be derived from the class 
Command. 

The TableView class is responsible for the 
presentation and class Command is responsible for 
the behavior. UML diagram of the derived classes 
is presented in the figure 11. 

 
Fig. 11. UML Class diagram. Left side of the diagram is 
reserved for the classes responsible for the presentation and 
the right side is reserved for the classes responsible for the 
behavior. Design of classes TableView and Command is 
completely orthogonal. It means that each derived class from 
the presentation part can be combined with the each Command 
class. 

This way we have the strict separation between 
presentation and the business logic. If we want to 
add new functionality we just add new class and 
everything else remains the same. Also, if 
something in the presentation should be changed, 
a new class should be derived and everything in 
the behavior part remains the same. 
3) Business logic 
Central part of the business logic layer is the class 
Command which implements Design Pattern 
Command. This abstract class has the abstract 
method Command::Execute which should be 
redefined in each derived class. Class implements 
the design pattern Command which allows easy 
development of functionalities: logging, security 

protection, unto and all other functionality related 
to command execution. 
 
4) Presentation Layer 
Base class TableView is central in the 
presentation part. That class is responsible for the 
look and feel of the system. Other classes like 
TableEdit or TableSearch can be derived  
from that class , and they will  have a specific look 
and feel for the specific functionality they support. 
We noticed in the discussion on the problems that 
every human visible item should be 
parameterized. This layer and the class 
TableView provides that. It contains methods 
which control if any element will be presented and 
how it will be presented. By default, all elements 
are visible but in the derived classes the way of 
presentation can be changed. 

5) Database Manager 
Often requirement is that system should be 
independent from the specific RDBMS. It means 
that code should be able to use Orcale, MS Sql 
Server, SQLite and other databases. To achieve 
that, another layer needs to be introduced. That 
layer will hide specific database from the rest of 
the system. 

4. CONCLUSION 
This approach is successfully applied in the 

development of information system for Ford. Our 
assumptions about possible problems were 
correct and proposed architecture solved all of 
them. We proved that development of enterprise 
applications using described architecture has 
many advantages: 

• Development is fast. Only the first phase 
seems to be slow. In other phases, the 
development is extremely fast and required 
functionalities are developed also very fast. 

• Changes in the requirements during the 
development phase are handled easily. 

• Problems related to the database design are 
solved efficiently. 

• Problems in the communication with other 
developer can be handled easily because 
architecture is very flexible with two levels of 
indirection: View Layer and Framework. 

ACKNOWLEDGMENT 
We would like to thank especially to Dragan 

Milićev, Dejan Marjanovic and Nebojša Piroćanac, 
excellent developers and computer scientists, for 
teaching me how to build high quality software for 
enterprize sistems.  

REFERENCES 
[1] Milićev, D., Object Oriented Modeling in Language UML, 

Mikro knjiga, Belgrade, 2001. 
[2] Lazarević, B., Marjanović, Z., Aničić, N., Babarogić, S., 

Database systems, Faculty of Organizational Sciences, 
Belgrade, 2003. 

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design 
Patterns, Addison-Wesley, 1995. 

[4] Robinson, S., Allen, K., Cornes, O., Professional 
programming, C#.Net, Cet, Belgrade, 2005. 

 



 

 34

Milovanović M. Miloš was born in 
Kragujevac, Serbia in 1980. He is a PhD 
student at Barcelona Supercomputing 
Center, Barcelona, Spain.  He graduated at 
the Faculty of Electrical Engineering (ETF), 
University of Belgrade in 2004. He was 
teaching and research assistant at ETF from 
2004 till 2006, where he was teaching  

six courses related to Computer Science and was involved in 
several international projects. He attended variety of 
international programming contests and won lot of awards. The 
most significant awards were silver medal at International 
Olympiad in Informatics (IOI) in Turkey in 1999 and 5th place in 
Nokia Code Master Competition among 700 contestants.  
 
 


